Source code for stable_baselines.trpo_mpi.trpo_mpi

import time
from contextlib import contextmanager
from collections import deque

import gym
from mpi4py import MPI
import tensorflow as tf
import numpy as np

import stable_baselines.common.tf_util as tf_util
from stable_baselines.common.tf_util import total_episode_reward_logger
from stable_baselines.common import explained_variance, zipsame, dataset, fmt_row, colorize, ActorCriticRLModel, \
    SetVerbosity, TensorboardWriter
from stable_baselines import logger
from stable_baselines.common.mpi_adam import MpiAdam
from stable_baselines.common.cg import conjugate_gradient
from stable_baselines.common.policies import ActorCriticPolicy
from stable_baselines.common.misc_util import flatten_lists
from stable_baselines.common.runners import traj_segment_generator
from stable_baselines.trpo_mpi.utils import add_vtarg_and_adv


[docs]class TRPO(ActorCriticRLModel): """ Trust Region Policy Optimization (https://arxiv.org/abs/1502.05477) :param policy: (ActorCriticPolicy or str) The policy model to use (MlpPolicy, CnnPolicy, CnnLstmPolicy, ...) :param env: (Gym environment or str) The environment to learn from (if registered in Gym, can be str) :param gamma: (float) the discount value :param timesteps_per_batch: (int) the number of timesteps to run per batch (horizon) :param max_kl: (float) the Kullback-Leibler loss threshold :param cg_iters: (int) the number of iterations for the conjugate gradient calculation :param lam: (float) GAE factor :param entcoeff: (float) the weight for the entropy loss :param cg_damping: (float) the compute gradient dampening factor :param vf_stepsize: (float) the value function stepsize :param vf_iters: (int) the value function's number iterations for learning :param verbose: (int) the verbosity level: 0 none, 1 training information, 2 tensorflow debug :param tensorboard_log: (str) the log location for tensorboard (if None, no logging) :param _init_setup_model: (bool) Whether or not to build the network at the creation of the instance :param policy_kwargs: (dict) additional arguments to be passed to the policy on creation :param full_tensorboard_log: (bool) enable additional logging when using tensorboard WARNING: this logging can take a lot of space quickly :param seed: (int) Seed for the pseudo-random generators (python, numpy, tensorflow). If None (default), use random seed. Note that if you want completely deterministic results, you must set `n_cpu_tf_sess` to 1. :param n_cpu_tf_sess: (int) The number of threads for TensorFlow operations If None, the number of cpu of the current machine will be used. """ def __init__(self, policy, env, gamma=0.99, timesteps_per_batch=1024, max_kl=0.01, cg_iters=10, lam=0.98, entcoeff=0.0, cg_damping=1e-2, vf_stepsize=3e-4, vf_iters=3, verbose=0, tensorboard_log=None, _init_setup_model=True, policy_kwargs=None, full_tensorboard_log=False, seed=None, n_cpu_tf_sess=1): super(TRPO, self).__init__(policy=policy, env=env, verbose=verbose, requires_vec_env=False, _init_setup_model=_init_setup_model, policy_kwargs=policy_kwargs, seed=seed, n_cpu_tf_sess=n_cpu_tf_sess) self.using_gail = False self.timesteps_per_batch = timesteps_per_batch self.cg_iters = cg_iters self.cg_damping = cg_damping self.gamma = gamma self.lam = lam self.max_kl = max_kl self.vf_iters = vf_iters self.vf_stepsize = vf_stepsize self.entcoeff = entcoeff self.tensorboard_log = tensorboard_log self.full_tensorboard_log = full_tensorboard_log # GAIL Params self.hidden_size_adversary = 100 self.adversary_entcoeff = 1e-3 self.expert_dataset = None self.g_step = 1 self.d_step = 1 self.d_stepsize = 3e-4 self.graph = None self.sess = None self.policy_pi = None self.loss_names = None self.assign_old_eq_new = None self.compute_losses = None self.compute_lossandgrad = None self.compute_fvp = None self.compute_vflossandgrad = None self.d_adam = None self.vfadam = None self.get_flat = None self.set_from_flat = None self.timed = None self.allmean = None self.nworkers = None self.rank = None self.reward_giver = None self.step = None self.proba_step = None self.initial_state = None self.params = None self.summary = None if _init_setup_model: self.setup_model() def _get_pretrain_placeholders(self): policy = self.policy_pi action_ph = policy.pdtype.sample_placeholder([None]) if isinstance(self.action_space, gym.spaces.Discrete): return policy.obs_ph, action_ph, policy.policy return policy.obs_ph, action_ph, policy.deterministic_action
[docs] def setup_model(self): # prevent import loops from stable_baselines.gail.adversary import TransitionClassifier with SetVerbosity(self.verbose): assert issubclass(self.policy, ActorCriticPolicy), "Error: the input policy for the TRPO model must be " \ "an instance of common.policies.ActorCriticPolicy." self.nworkers = MPI.COMM_WORLD.Get_size() self.rank = MPI.COMM_WORLD.Get_rank() np.set_printoptions(precision=3) self.graph = tf.Graph() with self.graph.as_default(): self.set_random_seed(self.seed) self.sess = tf_util.make_session(num_cpu=self.n_cpu_tf_sess, graph=self.graph) if self.using_gail: self.reward_giver = TransitionClassifier(self.observation_space, self.action_space, self.hidden_size_adversary, entcoeff=self.adversary_entcoeff) # Construct network for new policy self.policy_pi = self.policy(self.sess, self.observation_space, self.action_space, self.n_envs, 1, None, reuse=False, **self.policy_kwargs) # Network for old policy with tf.variable_scope("oldpi", reuse=False): old_policy = self.policy(self.sess, self.observation_space, self.action_space, self.n_envs, 1, None, reuse=False, **self.policy_kwargs) with tf.variable_scope("loss", reuse=False): atarg = tf.placeholder(dtype=tf.float32, shape=[None]) # Target advantage function (if applicable) ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return observation = self.policy_pi.obs_ph action = self.policy_pi.pdtype.sample_placeholder([None]) kloldnew = old_policy.proba_distribution.kl(self.policy_pi.proba_distribution) ent = self.policy_pi.proba_distribution.entropy() meankl = tf.reduce_mean(kloldnew) meanent = tf.reduce_mean(ent) entbonus = self.entcoeff * meanent vferr = tf.reduce_mean(tf.square(self.policy_pi.value_flat - ret)) # advantage * pnew / pold ratio = tf.exp(self.policy_pi.proba_distribution.logp(action) - old_policy.proba_distribution.logp(action)) surrgain = tf.reduce_mean(ratio * atarg) optimgain = surrgain + entbonus losses = [optimgain, meankl, entbonus, surrgain, meanent] self.loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"] dist = meankl all_var_list = tf_util.get_trainable_vars("model") var_list = [v for v in all_var_list if "/vf" not in v.name and "/q/" not in v.name] vf_var_list = [v for v in all_var_list if "/pi" not in v.name and "/logstd" not in v.name] self.get_flat = tf_util.GetFlat(var_list, sess=self.sess) self.set_from_flat = tf_util.SetFromFlat(var_list, sess=self.sess) klgrads = tf.gradients(dist, var_list) flat_tangent = tf.placeholder(dtype=tf.float32, shape=[None], name="flat_tan") shapes = [var.get_shape().as_list() for var in var_list] start = 0 tangents = [] for shape in shapes: var_size = tf_util.intprod(shape) tangents.append(tf.reshape(flat_tangent[start: start + var_size], shape)) start += var_size gvp = tf.add_n([tf.reduce_sum(grad * tangent) for (grad, tangent) in zipsame(klgrads, tangents)]) # pylint: disable=E1111 # Fisher vector products fvp = tf_util.flatgrad(gvp, var_list) tf.summary.scalar('entropy_loss', meanent) tf.summary.scalar('policy_gradient_loss', optimgain) tf.summary.scalar('value_function_loss', surrgain) tf.summary.scalar('approximate_kullback-leibler', meankl) tf.summary.scalar('loss', optimgain + meankl + entbonus + surrgain + meanent) self.assign_old_eq_new = \ tf_util.function([], [], updates=[tf.assign(oldv, newv) for (oldv, newv) in zipsame(tf_util.get_globals_vars("oldpi"), tf_util.get_globals_vars("model"))]) self.compute_losses = tf_util.function([observation, old_policy.obs_ph, action, atarg], losses) self.compute_fvp = tf_util.function([flat_tangent, observation, old_policy.obs_ph, action, atarg], fvp) self.compute_vflossandgrad = tf_util.function([observation, old_policy.obs_ph, ret], tf_util.flatgrad(vferr, vf_var_list)) @contextmanager def timed(msg): if self.rank == 0 and self.verbose >= 1: print(colorize(msg, color='magenta')) start_time = time.time() yield print(colorize("done in {:.3f} seconds".format((time.time() - start_time)), color='magenta')) else: yield def allmean(arr): assert isinstance(arr, np.ndarray) out = np.empty_like(arr) MPI.COMM_WORLD.Allreduce(arr, out, op=MPI.SUM) out /= self.nworkers return out tf_util.initialize(sess=self.sess) th_init = self.get_flat() MPI.COMM_WORLD.Bcast(th_init, root=0) self.set_from_flat(th_init) with tf.variable_scope("Adam_mpi", reuse=False): self.vfadam = MpiAdam(vf_var_list, sess=self.sess) if self.using_gail: self.d_adam = MpiAdam(self.reward_giver.get_trainable_variables(), sess=self.sess) self.d_adam.sync() self.vfadam.sync() with tf.variable_scope("input_info", reuse=False): tf.summary.scalar('discounted_rewards', tf.reduce_mean(ret)) tf.summary.scalar('learning_rate', tf.reduce_mean(self.vf_stepsize)) tf.summary.scalar('advantage', tf.reduce_mean(atarg)) tf.summary.scalar('kl_clip_range', tf.reduce_mean(self.max_kl)) if self.full_tensorboard_log: tf.summary.histogram('discounted_rewards', ret) tf.summary.histogram('learning_rate', self.vf_stepsize) tf.summary.histogram('advantage', atarg) tf.summary.histogram('kl_clip_range', self.max_kl) if tf_util.is_image(self.observation_space): tf.summary.image('observation', observation) else: tf.summary.histogram('observation', observation) self.timed = timed self.allmean = allmean self.step = self.policy_pi.step self.proba_step = self.policy_pi.proba_step self.initial_state = self.policy_pi.initial_state self.params = tf_util.get_trainable_vars("model") + tf_util.get_trainable_vars("oldpi") if self.using_gail: self.params.extend(self.reward_giver.get_trainable_variables()) self.summary = tf.summary.merge_all() self.compute_lossandgrad = \ tf_util.function([observation, old_policy.obs_ph, action, atarg, ret], [self.summary, tf_util.flatgrad(optimgain, var_list)] + losses)
def _initialize_dataloader(self): """Initialize dataloader.""" batchsize = self.timesteps_per_batch // self.d_step self.expert_dataset.init_dataloader(batchsize)
[docs] def learn(self, total_timesteps, callback=None, log_interval=100, tb_log_name="TRPO", reset_num_timesteps=True): new_tb_log = self._init_num_timesteps(reset_num_timesteps) callback = self._init_callback(callback) with SetVerbosity(self.verbose), TensorboardWriter(self.graph, self.tensorboard_log, tb_log_name, new_tb_log) \ as writer: self._setup_learn() with self.sess.as_default(): callback.on_training_start(locals(), globals()) seg_gen = traj_segment_generator(self.policy_pi, self.env, self.timesteps_per_batch, reward_giver=self.reward_giver, gail=self.using_gail, callback=callback) episodes_so_far = 0 timesteps_so_far = 0 iters_so_far = 0 t_start = time.time() len_buffer = deque(maxlen=40) # rolling buffer for episode lengths reward_buffer = deque(maxlen=40) # rolling buffer for episode rewards true_reward_buffer = None if self.using_gail: true_reward_buffer = deque(maxlen=40) self._initialize_dataloader() # Stats not used for now # TODO: replace with normal tb logging #  g_loss_stats = Stats(loss_names) # d_loss_stats = Stats(reward_giver.loss_name) # ep_stats = Stats(["True_rewards", "Rewards", "Episode_length"]) while True: if timesteps_so_far >= total_timesteps: break logger.log("********** Iteration %i ************" % iters_so_far) def fisher_vector_product(vec): return self.allmean(self.compute_fvp(vec, *fvpargs, sess=self.sess)) + self.cg_damping * vec # ------------------ Update G ------------------ logger.log("Optimizing Policy...") # g_step = 1 when not using GAIL mean_losses = None vpredbefore = None tdlamret = None observation = None action = None seg = None for k in range(self.g_step): with self.timed("sampling"): seg = seg_gen.__next__() # Stop training early (triggered by the callback) if not seg.get('continue_training', True): # pytype: disable=attribute-error break add_vtarg_and_adv(seg, self.gamma, self.lam) # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets)) observation, action = seg["observations"], seg["actions"] atarg, tdlamret = seg["adv"], seg["tdlamret"] vpredbefore = seg["vpred"] # predicted value function before update atarg = (atarg - atarg.mean()) / (atarg.std() + 1e-8) # standardized advantage function estimate # true_rew is the reward without discount if writer is not None: total_episode_reward_logger(self.episode_reward, seg["true_rewards"].reshape( (self.n_envs, -1)), seg["dones"].reshape((self.n_envs, -1)), writer, self.num_timesteps) args = seg["observations"], seg["observations"], seg["actions"], atarg # Subsampling: see p40-42 of John Schulman thesis # http://joschu.net/docs/thesis.pdf fvpargs = [arr[::5] for arr in args] self.assign_old_eq_new(sess=self.sess) with self.timed("computegrad"): steps = self.num_timesteps + (k + 1) * (seg["total_timestep"] / self.g_step) run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() if self.full_tensorboard_log else None # run loss backprop with summary, and save the metadata (memory, compute time, ...) if writer is not None: summary, grad, *lossbefore = self.compute_lossandgrad(*args, tdlamret, sess=self.sess, options=run_options, run_metadata=run_metadata) if self.full_tensorboard_log: writer.add_run_metadata(run_metadata, 'step%d' % steps) writer.add_summary(summary, steps) else: _, grad, *lossbefore = self.compute_lossandgrad(*args, tdlamret, sess=self.sess, options=run_options, run_metadata=run_metadata) lossbefore = self.allmean(np.array(lossbefore)) grad = self.allmean(grad) if np.allclose(grad, 0): logger.log("Got zero gradient. not updating") else: with self.timed("conjugate_gradient"): stepdir = conjugate_gradient(fisher_vector_product, grad, cg_iters=self.cg_iters, verbose=self.rank == 0 and self.verbose >= 1) assert np.isfinite(stepdir).all() shs = .5 * stepdir.dot(fisher_vector_product(stepdir)) # abs(shs) to avoid taking square root of negative values lagrange_multiplier = np.sqrt(abs(shs) / self.max_kl) # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g)) fullstep = stepdir / lagrange_multiplier expectedimprove = grad.dot(fullstep) surrbefore = lossbefore[0] stepsize = 1.0 thbefore = self.get_flat() for _ in range(10): thnew = thbefore + fullstep * stepsize self.set_from_flat(thnew) mean_losses = surr, kl_loss, *_ = self.allmean( np.array(self.compute_losses(*args, sess=self.sess))) improve = surr - surrbefore logger.log("Expected: %.3f Actual: %.3f" % (expectedimprove, improve)) if not np.isfinite(mean_losses).all(): logger.log("Got non-finite value of losses -- bad!") elif kl_loss > self.max_kl * 1.5: logger.log("violated KL constraint. shrinking step.") elif improve < 0: logger.log("surrogate didn't improve. shrinking step.") else: logger.log("Stepsize OK!") break stepsize *= .5 else: logger.log("couldn't compute a good step") self.set_from_flat(thbefore) if self.nworkers > 1 and iters_so_far % 20 == 0: # list of tuples paramsums = MPI.COMM_WORLD.allgather((thnew.sum(), self.vfadam.getflat().sum())) assert all(np.allclose(ps, paramsums[0]) for ps in paramsums[1:]) for (loss_name, loss_val) in zip(self.loss_names, mean_losses): logger.record_tabular(loss_name, loss_val) with self.timed("vf"): for _ in range(self.vf_iters): # NOTE: for recurrent policies, use shuffle=False? for (mbob, mbret) in dataset.iterbatches((seg["observations"], seg["tdlamret"]), include_final_partial_batch=False, batch_size=128, shuffle=True): grad = self.allmean(self.compute_vflossandgrad(mbob, mbob, mbret, sess=self.sess)) self.vfadam.update(grad, self.vf_stepsize) # Stop training early (triggered by the callback) if not seg.get('continue_training', True): # pytype: disable=attribute-error break logger.record_tabular("explained_variance_tdlam_before", explained_variance(vpredbefore, tdlamret)) if self.using_gail: # ------------------ Update D ------------------ logger.log("Optimizing Discriminator...") logger.log(fmt_row(13, self.reward_giver.loss_name)) assert len(observation) == self.timesteps_per_batch batch_size = self.timesteps_per_batch // self.d_step # NOTE: uses only the last g step for observation d_losses = [] # list of tuples, each of which gives the loss for a minibatch # NOTE: for recurrent policies, use shuffle=False? for ob_batch, ac_batch in dataset.iterbatches((observation, action), include_final_partial_batch=False, batch_size=batch_size, shuffle=True): ob_expert, ac_expert = self.expert_dataset.get_next_batch() # update running mean/std for reward_giver if self.reward_giver.normalize: self.reward_giver.obs_rms.update(np.concatenate((ob_batch, ob_expert), 0)) # Reshape actions if needed when using discrete actions if isinstance(self.action_space, gym.spaces.Discrete): if len(ac_batch.shape) == 2: ac_batch = ac_batch[:, 0] if len(ac_expert.shape) == 2: ac_expert = ac_expert[:, 0] *newlosses, grad = self.reward_giver.lossandgrad(ob_batch, ac_batch, ob_expert, ac_expert) self.d_adam.update(self.allmean(grad), self.d_stepsize) d_losses.append(newlosses) logger.log(fmt_row(13, np.mean(d_losses, axis=0))) # lr: lengths and rewards lr_local = (seg["ep_lens"], seg["ep_rets"], seg["ep_true_rets"]) # local values list_lr_pairs = MPI.COMM_WORLD.allgather(lr_local) # list of tuples lens, rews, true_rets = map(flatten_lists, zip(*list_lr_pairs)) true_reward_buffer.extend(true_rets) else: # lr: lengths and rewards lr_local = (seg["ep_lens"], seg["ep_rets"]) # local values list_lr_pairs = MPI.COMM_WORLD.allgather(lr_local) # list of tuples lens, rews = map(flatten_lists, zip(*list_lr_pairs)) len_buffer.extend(lens) reward_buffer.extend(rews) if len(len_buffer) > 0: logger.record_tabular("EpLenMean", np.mean(len_buffer)) logger.record_tabular("EpRewMean", np.mean(reward_buffer)) if self.using_gail: logger.record_tabular("EpTrueRewMean", np.mean(true_reward_buffer)) logger.record_tabular("EpThisIter", len(lens)) episodes_so_far += len(lens) current_it_timesteps = MPI.COMM_WORLD.allreduce(seg["total_timestep"]) timesteps_so_far += current_it_timesteps self.num_timesteps += current_it_timesteps iters_so_far += 1 logger.record_tabular("EpisodesSoFar", episodes_so_far) logger.record_tabular("TimestepsSoFar", self.num_timesteps) logger.record_tabular("TimeElapsed", time.time() - t_start) if self.verbose >= 1 and self.rank == 0: logger.dump_tabular() callback.on_training_end() return self
[docs] def save(self, save_path, cloudpickle=False): data = { "gamma": self.gamma, "timesteps_per_batch": self.timesteps_per_batch, "max_kl": self.max_kl, "cg_iters": self.cg_iters, "lam": self.lam, "entcoeff": self.entcoeff, "cg_damping": self.cg_damping, "vf_stepsize": self.vf_stepsize, "vf_iters": self.vf_iters, "hidden_size_adversary": self.hidden_size_adversary, "adversary_entcoeff": self.adversary_entcoeff, "expert_dataset": self.expert_dataset, "g_step": self.g_step, "d_step": self.d_step, "d_stepsize": self.d_stepsize, "using_gail": self.using_gail, "verbose": self.verbose, "policy": self.policy, "observation_space": self.observation_space, "action_space": self.action_space, "n_envs": self.n_envs, "n_cpu_tf_sess": self.n_cpu_tf_sess, "seed": self.seed, "_vectorize_action": self._vectorize_action, "policy_kwargs": self.policy_kwargs } params_to_save = self.get_parameters() self._save_to_file(save_path, data=data, params=params_to_save, cloudpickle=cloudpickle)