Try it online with Colab Notebooks!

All the following examples can be executed online using Google colab colab notebooks:

Basic Usage: Training, Saving, Loading

In the following example, we will train, save and load a DQN model on the Lunar Lander environment.


Lunar Lander Environment


LunarLander requires the python package box2d. You can install it using apt install swig and then pip install box2d box2d-kengz


load function re-creates model from scratch on each call, which can be slow. If you need to e.g. evaluate same model with multiple different sets of parameters, consider using load_parameters instead.

import gym

from stable_baselines import DQN

# Create environment
env = gym.make('LunarLander-v2')

# Instantiate the agent
model = DQN('MlpPolicy', env, learning_rate=1e-3, prioritized_replay=True, verbose=1)
# Train the agent
# Save the agent
del model  # delete trained model to demonstrate loading

# Load the trained agent
model = DQN.load("dqn_lunar")

# Enjoy trained agent
obs = env.reset()
for i in range(1000):
    action, _states = model.predict(obs)
    obs, rewards, dones, info = env.step(action)

Multiprocessing: Unleashing the Power of Vectorized Environments


CartPole Environment

import gym
import numpy as np

from stable_baselines.common.policies import MlpPolicy
from stable_baselines.common.vec_env import SubprocVecEnv
from stable_baselines.common import set_global_seeds
from stable_baselines import ACKTR

def make_env(env_id, rank, seed=0):
    Utility function for multiprocessed env.

    :param env_id: (str) the environment ID
    :param num_env: (int) the number of environments you wish to have in subprocesses
    :param seed: (int) the inital seed for RNG
    :param rank: (int) index of the subprocess
    def _init():
        env = gym.make(env_id)
        env.seed(seed + rank)
        return env
    return _init

env_id = "CartPole-v1"
num_cpu = 4  # Number of processes to use
# Create the vectorized environment
env = SubprocVecEnv([make_env(env_id, i) for i in range(num_cpu)])

model = ACKTR(MlpPolicy, env, verbose=1)

obs = env.reset()
for _ in range(1000):
    action, _states = model.predict(obs)
    obs, rewards, dones, info = env.step(action)

Using Callback: Monitoring Training

You can define a custom callback function that will be called inside the agent. This could be useful when you want to monitor training, for instance display live learning curves in Tensorboard (or in Visdom) or save the best agent. If your callback returns False, training is aborted early.


Learning curve of DDPG on LunarLanderContinuous environment

import os

import gym
import numpy as np
import matplotlib.pyplot as plt

from stable_baselines.ddpg.policies import LnMlpPolicy
from stable_baselines.bench import Monitor
from stable_baselines.results_plotter import load_results, ts2xy
from stable_baselines import DDPG
from stable_baselines.ddpg import AdaptiveParamNoiseSpec

best_mean_reward, n_steps = -np.inf, 0

def callback(_locals, _globals):
  Callback called at each step (for DQN an others) or after n steps (see ACER or PPO2)
  :param _locals: (dict)
  :param _globals: (dict)
  global n_steps, best_mean_reward
  # Print stats every 1000 calls
  if (n_steps + 1) % 1000 == 0:
      # Evaluate policy training performance
      x, y = ts2xy(load_results(log_dir), 'timesteps')
      if len(x) > 0:
          mean_reward = np.mean(y[-100:])
          print(x[-1], 'timesteps')
          print("Best mean reward: {:.2f} - Last mean reward per episode: {:.2f}".format(best_mean_reward, mean_reward))

          # New best model, you could save the agent here
          if mean_reward > best_mean_reward:
              best_mean_reward = mean_reward
              # Example for saving best model
              print("Saving new best model")
              _locals['self'].save(log_dir + 'best_model.pkl')
  n_steps += 1
  return True

# Create log dir
log_dir = "/tmp/gym/"
os.makedirs(log_dir, exist_ok=True)

# Create and wrap the environment
env = gym.make('LunarLanderContinuous-v2')
env = Monitor(env, log_dir, allow_early_resets=True)

# Add some param noise for exploration
param_noise = AdaptiveParamNoiseSpec(initial_stddev=0.1, desired_action_stddev=0.1)
# Because we use parameter noise, we should use a MlpPolicy with layer normalization
model = DDPG(LnMlpPolicy, env, param_noise=param_noise, verbose=0)
# Train the agent
model.learn(total_timesteps=int(1e5), callback=callback)

Atari Games


Trained A2C agent on Breakout


Pong Environment

Training a RL agent on Atari games is straightforward thanks to make_atari_env helper function. It will do all the preprocessing and multiprocessing for you.

from stable_baselines.common.cmd_util import make_atari_env
from stable_baselines.common.vec_env import VecFrameStack
from stable_baselines import ACER

# There already exists an environment generator
# that will make and wrap atari environments correctly.
# Here we are also multiprocessing training (num_env=4 => 4 processes)
env = make_atari_env('PongNoFrameskip-v4', num_env=4, seed=0)
# Frame-stacking with 4 frames
env = VecFrameStack(env, n_stack=4)

model = ACER('CnnPolicy', env, verbose=1)

obs = env.reset()
while True:
    action, _states = model.predict(obs)
    obs, rewards, dones, info = env.step(action)

Mujoco: Normalizing input features

Normalizing input features may be essential to successful training of an RL agent (by default, images are scaled but not other types of input), for instance when training on Mujoco. For that, a wrapper exists and will compute a running average and standard deviation of input features (it can do the same for rewards).


We cannot provide a notebook for this example because Mujoco is a proprietary engine and requires a license.

import gym

from stable_baselines.common.policies import MlpPolicy
from stable_baselines.common.vec_env import DummyVecEnv, VecNormalize
from stable_baselines import PPO2

env = DummyVecEnv([lambda: gym.make("Reacher-v2")])
# Automatically normalize the input features
env = VecNormalize(env, norm_obs=True, norm_reward=False,

model = PPO2(MlpPolicy, env)

# Don't forget to save the running average when saving the agent
log_dir = "/tmp/"
model.save(log_dir + "ppo_reacher")

Custom Policy Network

Stable baselines provides default policy networks for images (CNNPolicies) and other type of inputs (MlpPolicies). However, you can also easily define a custom architecture for the policy network (see custom policy section):

import gym

from stable_baselines.common.policies import FeedForwardPolicy
from stable_baselines.common.vec_env import DummyVecEnv
from stable_baselines import A2C

# Custom MLP policy of three layers of size 128 each
class CustomPolicy(FeedForwardPolicy):
    def __init__(self, *args, **kwargs):
        super(CustomPolicy, self).__init__(*args, **kwargs,
                                           net_arch=[dict(pi=[128, 128, 128], vf=[128, 128, 128])],

model = A2C(CustomPolicy, 'LunarLander-v2', verbose=1)
# Train the agent

Accessing and modifying model parameters

You can access model’s parameters via load_parameters and get_parameters functions, which use dictionaries that map variable names to NumPy arrays.

These functions are useful when you need to e.g. evaluate large set of models with same network structure, visualize different layers of the network or modify parameters manually.

You can access original Tensorflow Variables with function get_parameter_list.

Following example demonstrates reading parameters, modifying some of them and loading them to model by implementing evolution strategy for solving CartPole-v1 environment. The initial guess for parameters is obtained by running A2C policy gradient updates on the model.

import gym
import numpy as np

from stable_baselines.common.policies import MlpPolicy
from stable_baselines.common.vec_env import DummyVecEnv
from stable_baselines import A2C

def mutate(params):
    """Mutate parameters by adding normal noise to them"""
    return dict((name, param + np.random.normal(size=param.shape))
                for name, param in params.items())

def evaluate(env, model):
    """Return mean fitness (sum of episodic rewards) for given model"""
    episode_rewards = []
    for _ in range(10):
        reward_sum = 0
        done = False
        obs = env.reset()
        while not done:
            action, _states = model.predict(obs)
            obs, reward, done, info = env.step(action)
            reward_sum += reward
    return np.mean(episode_rewards)

# Create env
env = gym.make('CartPole-v1')
env = DummyVecEnv([lambda: env])
# Create policy with a small network
model = A2C(MlpPolicy, env, ent_coef=0.0, learning_rate=0.1,
            policy_kwargs={'net_arch': [8, ]})

# Use traditional actor-critic policy gradient updates to
# find good initial parameters

# Get the parameters as the starting point for ES
mean_params = model.get_parameters()

# Include only variables with "/pi/" (policy) or "/shared" (shared layers)
# in their name: Only these ones affect the action.
mean_params = dict((key, value) for key, value in mean_params.items()
                   if ("/pi/" in key or "/shared" in key))

for iteration in range(10):
    # Create population of candidates and evaluate them
    population = []
    for population_i in range(100):
        candidate = mutate(mean_params)
        # Load new policy parameters to agent.
        # Tell function that it should only update parameters
        # we give it (policy parameters)
        model.load_parameters(candidate, exact_match=False)
        fitness = evaluate(env, model)
        population.append((candidate, fitness))
    # Take top 10% and use average over their parameters as next mean parameter
    top_candidates = sorted(population, key=lambda x: x[1], reverse=True)[:10]
    mean_params = dict(
        (name, np.stack([top_candidate[0][name] for top_candidate in top_candidates]).mean(0))
        for name in mean_params.keys()
    mean_fitness = sum(top_candidate[1] for top_candidate in top_candidates) / 10.0
    print("Iteration {:<3} Mean top fitness: {:.2f}".format(iteration, mean_fitness))

Recurrent Policies

This example demonstrate how to train a recurrent policy and how to test it properly.


One current limitation of recurrent policies is that you must test them with the same number of environments they have been trained on.

from stable_baselines import PPO2

# For recurrent policies, with PPO2, the number of environments run in parallel
# should be a multiple of nminibatches.
model = PPO2('MlpLstmPolicy', 'CartPole-v1', nminibatches=1, verbose=1)

# Retrieve the env
env = model.get_env()

obs = env.reset()
# Passing state=None to the predict function means
# it is the initial state
state = None
# When using VecEnv, done is a vector
done = [False for _ in range(env.num_envs)]
for _ in range(1000):
    # We need to pass the previous state and a mask for recurrent policies
    # to reset lstm state when a new episode begin
    action, state = model.predict(obs, state=state, mask=done)
    obs, reward , done, _ = env.step(action)
    # Note: with VecEnv, env.reset() is automatically called

    # Show the env

Hindsight Experience Replay (HER)

For this example, we are using Highway-Env by @eleurent.


The highway-parking-v0 environment.

The parking env is a goal-conditioned continuous control task, in which the vehicle must park in a given space with the appropriate heading.


the hyperparameters in the following example were optimized for that environment.

import gym
import highway_env
import numpy as np

from stable_baselines import HER, SAC, DDPG, TD3
from stable_baselines.ddpg import NormalActionNoise

env = gym.make("parking-v0")

# Create 4 artificial transitions per real transition
n_sampled_goal = 4

# SAC hyperparams:
model = HER('MlpPolicy', env, SAC, n_sampled_goal=n_sampled_goal,
            verbose=1, buffer_size=int(1e6),
            gamma=0.95, batch_size=256,
            policy_kwargs=dict(layers=[256, 256, 256]))

# DDPG Hyperparams:
# NOTE: it works even without action noise
# n_actions = env.action_space.shape[0]
# noise_std = 0.2
# action_noise = NormalActionNoise(mean=np.zeros(n_actions), sigma=noise_std * np.ones(n_actions))
# model = HER('MlpPolicy', env, DDPG, n_sampled_goal=n_sampled_goal,
#             goal_selection_strategy='future',
#             verbose=1, buffer_size=int(1e6),
#             actor_lr=1e-3, critic_lr=1e-3, action_noise=action_noise,
#             gamma=0.95, batch_size=256,
#             policy_kwargs=dict(layers=[256, 256, 256]))


# Load saved model
model = HER.load('her_sac_highway', env=env)

obs = env.reset()

# Evaluate the agent
episode_reward = 0
for _ in range(100):
      action, _ = model.predict(obs)
      obs, reward, done, info = env.step(action)
      episode_reward += reward
      if done or info.get('is_success', False):
              print("Reward:", episode_reward, "Success?", info.get('is_success', False))
              episode_reward = 0.0
              obs = env.reset()

Continual Learning

You can also move from learning on one environment to another for continual learning (PPO2 on DemonAttack-v0, then transferred on SpaceInvaders-v0):

from stable_baselines.common.cmd_util import make_atari_env
from stable_baselines import PPO2

# There already exists an environment generator
# that will make and wrap atari environments correctly
env = make_atari_env('DemonAttackNoFrameskip-v4', num_env=8, seed=0)

model = PPO2('CnnPolicy', env, verbose=1)

obs = env.reset()
for i in range(1000):
    action, _states = model.predict(obs)
    obs, rewards, dones, info = env.step(action)

# The number of environments must be identical when changing environments
env = make_atari_env('SpaceInvadersNoFrameskip-v4', num_env=8, seed=0)

# change env

obs = env.reset()
while True:
    action, _states = model.predict(obs)
    obs, rewards, dones, info = env.step(action)

Record a Video

Record a mp4 video (here using a random agent).


It requires ffmpeg or avconv to be installed on the machine.

import gym
from stable_baselines.common.vec_env import VecVideoRecorder, DummyVecEnv

env_id = 'CartPole-v1'
video_folder = 'logs/videos/'
video_length = 100

env = DummyVecEnv([lambda: gym.make(env_id)])

obs = env.reset()

# Record the video starting at the first step
env = VecVideoRecorder(env, video_folder,
                       record_video_trigger=lambda x: x == 0, video_length=video_length,

for _ in range(video_length + 1):
  action = [env.action_space.sample()]
  obs, _, _, _ = env.step(action)

Bonus: Make a GIF of a Trained Agent


For Atari games, you need to use a screen recorder such as Kazam. And then convert the video using ffmpeg

import imageio
import numpy as np

from stable_baselines.common.policies import MlpPolicy
from stable_baselines import A2C

model = A2C(MlpPolicy, "LunarLander-v2").learn(100000)

images = []
obs = model.env.reset()
img = model.env.render(mode='rgb_array')
for i in range(350):
    action, _ = model.predict(obs)
    obs, _, _ ,_ = model.env.step(action)
    img = model.env.render(mode='rgb_array')

imageio.mimsave('lander_a2c.gif', [np.array(img[0]) for i, img in enumerate(images) if i%2 == 0], fps=29)